|
Photoelectrochemical cells or PECs are solar cells that produce electrical energy or hydrogen in a process similar to the electrolysis of water. == Photogeneration cell == This type of cell electrolizes water to hydrogen and oxygen gas by irradiating the anode with electromagnetic radiation. This has been referred to as artificial photosynthesis and has been suggested as a way of storing solar energy in hydrogen for use as fuel. Incoming sunlight excites free electrons near the surface of the silicon electrode. These electrons flow through wires to the stainless steel electrode, where four of them react with four water molecules to form two molecules of hydrogen and 4 OH groups. The OH groups flow through the liquid electrolyte to the surface of the silicon electrode. There they react with the four holes associated with the four photoelectrons, the result being two water molecules and two oxygen molecules. Illuminated silicon immediately begins to corrode under contact with the electrolytes. The corrosion consumes material and disrupts the properties of the surfaces and interfaces within the cell.〔 Two types of photochemical systems operate via photocatalysis. One uses semiconductor surfaces as catalysts. In these devices the semiconductor surface absorbs solar energy and acts as an electrode for water splitting. The other methodology uses in-solution metal complexes as catalysts. Photogeneration cells have passed the 10 percent economic efficiency barrier. Corrosion of the semiconductors remains an issue, given their direct contact with water. Research is now ongoing to reach a service life of 10000 hours, a requirement established by the United States Department of Energy. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「photoelectrochemical cell」の詳細全文を読む スポンサード リンク
|